Advanced NMR &
Imaging

Week 7: Spin Echoes, Diffusion, & Coherence Transfer



Dances with Spins: Multiple-Pulse NMR




Dances with Spins: Inversion-Recovery
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Multiple-Pulse NMR:
Measurement of Longitudinal Relaxation Rates (T,)
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Objectives

Use the guantum-mechanical based vector
description of NMR to develop and understand
multiple pulse NMR spectroscopy

Understand the principles of spin echoes

Be able to use the product operator formalism to
describe coherence transter in coupled two-spin
systems

Understand the INPET experiment
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Dances with Spins: The Spin Echo
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The Hahn Echo

https://en.wikipedia.org/wiki/Spin_echo



Dances with Spins: The Spin Echo

7T : t2

Multiple-Pulse NMR:
Measurement of Transverse Relaxation Rates (T,)

echo
(m/2), Ty

gnal. Adapted from A. E. Derome, Modern NMR Techniques for

.19 Experimental echo si L 4
. L1y e Oxford, 1987, p. 91. (Reproduced by permission of Elsevier

Chemistry Research, Pergamon Press,
Science).



Dances with Spins: The Spin Echo

Multiple-Pulse NMR:
Measurement of Transverse Relaxation Rates (T,)




Spin Dynamics 22

o(r) = exp(—i%t)o (0) exp(+i}[t)

3 _

the state at the initial state
a given time the system Hamiltonian }[Z

The motion of the ensemble magnetic
moment (bulk magnetization, polarisation
a rotation around an axis defined by

the Hamiltonian.

In the following we will often talk about
the unitary evolution operator

U = exp(=-iHft)




Dances with Spins: The Spin Echo

We see from avery simple classical analysis that we expect the sequence to "refocus" the
chemical shift interaction. Can we obtain this result analytically?

For a spin whose resonance frequency in the rotating frame is w_,,

H = w, [
g /2 e
. . T t
at time T we have the operator for evolution J I
H = 0l T H = -
U= exp(—iu)cs‘clz)
H=nl,

(if we consider the pulse to be short
compared to the chemical shift
frequencies, then we can neglect chemical
shift evolution during the pulse (the delta
pulse approximation))

Immediately after the second pulse we have

U(r,) = exp(-inl )exp(-iow xl,),

and at a time 7 later this becomes

U(t +t) = exp(-io I, )exp(-inl, )exp(-io I )
which can be written under the form

Z

U(t+7) =exp(-io,,(t -7)I. )exp(~iw I, )exp(~inl, )exp(~ivw 7I.). (1.105)



Dances with Spins: The Spin Echo

U(t+7) =exp(~io,,(t -7)I. )exp(~iw I, )exp(~inl, )exp(~iow xI.). (1.105)

Considering the last three operators on the right hand side of eq. (1.105)
R = exp(-iw I )exp(-inl, )exp(-iw I ). (1.106)

It can be shown that if Uis a unitary operator, Uexp(A)U™" = exp(UAU ‘l), and going back to
equation (1.106) we can write

R = exp(-io tl )exp(-inl )exp(-iw xl, )exp(inl )exp(-inl,)

where exp(-inl )exp(-iw ! )exp(inl ) = exp(iw /) and equation (1.106) yields

R = exp(-io Tl )exp(io 1l )exp(-inl ) = exp(-inl,).

Thus, equation (1.105) becomes

U(t +71) = exp(-iw(t -T)I, )exp(~inl,) (1.112)

/2 7T




Dances with Spins: The Spin Echo

Average Hamiltonians
U(t+7) =exp(~io,,(t -T)I )exp(-inl, ) (1.112)

Note that we have manipulated the evolution operator, which is a very common trick in NMR,
and not the density matrix. Thus the result is valid for any initial state of the system represented
by 0. We note that the total evolution operator consists of (i) an initial pulse of angle x about x,

(ii) precession about z by an angle ¢ =w (7 —T). Note especially that for © = 7,

U(Z‘E) = exp (—in]x) (1.113)

and the evolution is independent of chemical shift. This corresponds to the formation of a spin

echo, as was predicted by the vector description.

7t/2 7T

no net evolution over this period




Dances with Spins: The Spin Echo

Average Hamiltonians
TT

| no net evolution over this period I
due to the chemical shift

the intensity of the echo at time 2t could be modulated by

transverse relaxation
molecular translational diffusion....

couplings to other spins.



NMR Measurement of Translational Diffusion
Pulsed Gradient Spin Echo (PGSE)

7T i t2

if a magnetic field gradient is generated across
the sample, the spins will only be refocussed BZ
if their frequency is the same in t, and t,.
This only happens if they do not move.

For Brownian translational diffusion, the
echo intensity is given by:

1(2t) = -1, exP(_(zT_:)) exp[_ DU, ) 2%3 }



NMR Measurement of Translational Diffusion
Pulsed Gradient Spin Echo (PGSE) / DOSY
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Caldarelli and coworkers, Proc. Natl. Acad. Sci. USA, 2003



Conclusions: Part |

The sequence T - 11 - T refocuses chemical shifts

It leads to formation a “spin echo” at time 21, and allows
measurement of T»

The average chemical shift Hamiltonian (or average
propagator) for the sequence evaluated at times 2t is zero.

In the presence of a magnetic field gradient across the
sample, the T - m - T sequence can be used to

quantitatively measure translational diffusion in the sample.
(The PGSE & DOSY experiments.)



Dances with Spins

What happens with more than one spin?

always better than “dancing with myselt” (Billy Idol)
or “dancing on my own” (Robyn)??



Spin Operators & Basis Sets

e | ﬂ) So fa1.’ we have been usi.ng the s.pin oper.ators L, Iy and I to .
describe the state of a single spin. That is because, together with
n the identity matrix, 1, they form a complete basis set.
For instance, the set of numbers
Yo
Ay =(i|4j)

@)
energy spectrum

levels constitute the elements of the matrix representation of the

operator A.
For a two-level, one spin I =1/2 system, using the identity 1= |1><l | + ‘2><2| to the left and right of an
operator A, we obtain A = A |11+ 4j5|1)(2|+ 4| 2)(1|+ 45,|2)(2| which yields a complete set of

four orthogonal basis operators, with 1 = a and 2 = f3,

aal=r=(g o] lasl-r=(; )

o= =g ) 1oal-r=] o

The operators /¢ and IP are called polarisatin operators and I+ and I- are called shift operators.



Spin Operators & Basis Sets

— 15 (10 (01
aal=r=( o] lensl-r=[] o

0 0 _ (0 0)

Jﬂ)\_ o= =(g ) 1oal-r=(] o

Basis sets are chosen for mathematical convenience, and a
energy spectrum more often used basis set is obtained by taking the linear

levels combinations:
0 1 (1 0
inelep)=r=3; o) da-e)-n-ify °)

_5(\1><z|_|z)<1\)=1y=g[° _1] LIt +[2)2])= 41 %i(l) (1)]

which are known as the Pauli matrices. Note that the fourth component is invariant to unitary
transformation (rotation), such that the space is completely defined by Iy, I, and I,.

(The three-dimensional space defined by the basis operators is called Liouville space (the space of
operators) as opposed to the complex two-dimensional Hilbert space (the state space).)



Spin Operators & Basis Sets

pp——— 4 flips spin 1 a B
a P spin 2 flips
13 24 12 34
—= J~|2 <+— — J-|2 <+—
op 2 pa 3
U UL
ao—N_; o
V0,1 frequency ~Vo,2

To calculate effects on spectra of two coupled spins we must first determine a suitable new basis set.

The Hilbert space is now sixteen dimensional and we obtain a product basis spanned by 16 basis
operators of the two spins I and S:

1,1, 1y, I, Sy, Sy, S,
LSy, 1Sy, ISz, 1,Se, 1Sy, IS, ISy, ISy, LS.,



Spin Operators & Basis Sets

The matrix representation of these operators is in terms of 4 x 4 matrices obtained from the Pauli
matrices for spin I = 1/2 using the direct product as follows:

(0 1 0 0)
1 0y _1(0 1) 1|/1 0 0 O
S, =188, = ® — =—
0 1) 2{1 0) 2/0 0 O 1
0 0 1 0)
(0 0 1 0)
1(0 1 1 0y 110 0 0 1
1, =1,Q81=— ® =—
2\1 0 0 1) 2|1 0 0 O
0 1 0 0)
(1 0 0 0)
1(1 O 1(1 O 110 -1 0 O
1.5, =1,88,=— @ — =— etc...
2\0 -1) 20 -1) 40 0 -1 0
0 0 0 1,

Afterwards the calculation proceeds as before.



Hamiltonian in the 2 Spin System

pp——— 4 flips spin 1 a B
a P spin 2 flips
13 24 12 34
—= J~|2 <+— — J-|2 <+—
op 2 pa 3
U UL
ao—N_; o
V0,1 frequency ~Vo,2

The full Hamiltonian can have up to 13 interactions. Fortunately most are usually zero or are unobservable.
To describe the spectrum of a homonuclear 2 spin system in an isotropic liquid, the Hamiltonian now

consists of three terms:

H = w, /. +w,l, + 721 _I,,

(and where here we assume that lw; - wyl > J, the so-called “weak coupling” approximation.)



Coupled Spins

/2 T E 5)

1 i >
H rf J ) I .

H =, +w,l, + nJ2I_I,.
0+(O)=le+12x 1l 22 112 6[)
w, =-YB,(1-0,) ’

What is the effective Hamiltonian for the sequence?
We already know that the chemical shift terms are zero on average.
What happens to the J coupling term?

U"" =exp{-inJ2l_I, t}exp{-inl, }exp{-in2J] I, v}
U" =exp{-inJ2I I, 2t}

The J coulping term is not refocused by a nt pulse applied to both spins.




Coupled Spins

) m g L

1
H rf J . I .

Pure J evolution during the spin echo sequence for two coupled spins.

H = nJ2I I,
c,.(0)=1, » I, cos(2tnJ) + 21, I, sin(2tnJ)

Fort=1/4J, 6(2t)=2L1,, This is called an anti-phase coherence

If we now apply a /2 pulse along x we obtain

c=-2I_1, The coherence has been transferred from
spin I, to spin I,.



Polarisation Transfer: INEPT

coherence transfer from protons to carbon-13

7T/2 TC /2

13C

|

T 7T/2

Coherence transfer by a heteronuclear spin echo sequence:

observation of a carbon-13 signal with the sensitivity of 1H.



Polarisation Transfer: INEPT

coherence transfer from protons to carbon-13
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Coherence transfer by a heteronuclear spin echo sequence:

Observation of a carbon-13 signal with the sensitivity of
1H: for a CH group the intensity of the carbon-13 signal
will be increased by the ratio yu/yc = 4.



Why is it called an Anti-Phase Coherence?

We have just seen that after a 7t/2 pulse applied along y, to generate 0(0) = /1., the evolution (not
including the chemical shift) would be:

o(t) = Lix cos(2nJt) + 21,1, sin(2mJt)
The 11, term is observable, and the I;y/>, term is not, and Fourier transform of a cosine function cos(a)

yields an in-phase doublet with frequency separation a.

If, on the other hand o(0) = I1y/>, then
o(t) = 211y, cos(2nJt) + I1xsin(2nJi)

Again, the I, term is observable and Fourier transform of a sine function sin(a) yields an anti-phase
doublet with frequency separation a.

— 2ndyo -~

in-phase : ;
doublet A A

cosine modulation FT

anti-phase
doublet

sine modulation



Polarisation Transfer: INEPT

coherence transfer between heteronuclei

Sensitivity enhancement of rare
nuclei by INEPT.

For an X-H group the the intensity
of the X signal will be increased by
the ratio yH/YX.

Figure 6.11 INEPT enhancement of
1%3Rh by polarisation transfer from *!P
(courtesy of Dr. C. Brevard, Bruker
Spectrospin, and Dr. D. H. M. W.
Thewissen er af., ITC-TNO, Utrecht,
The Netherlands).
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Figure 13.38 Experimental °N spectra of gramicydin in aqueous solution, using a single /2
pulse to excite the N spectrum (bottom) and using refocussed INEPT (top). Adapted from
‘Encyclopedia of Nuclear Magnetic Resonance’, D. M. Grant, and R. K. Harris (Eds), Wiley, Chichester
Vol. 4, p. 2533. (Reproduced by permission of John Wiley & Sons, Inc.)
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Polarisation Transfer: INEPT

coherence transfer from protons to carbon-13

/2 T /2

ull IR

T /2

13C I

Evolution under different Hamiltonians is often confined to distinct three-dimensional subspaces.

3.2, 4 ISy 5 .ZIxSy

1. L} s0-L
I

§ I Lt Sy S
I 1S, [+S, oLS. X
o =235y
equilibrium rf pulse evolution under J coupling rf pulse evolution under J coupling

21,5,

This description is referred to as the "product operator formalism."




Polarisation Transfer: refocused INEPT

coherence transfer from protons to attached X nuclei

Use the product operator fomalism to determine the spectrum
observed in ty with this pulse sequence.



Dances with Spins

Can we use coherence transfer
to make connections?



Proton-Carbon Correlation Spectroscopy?

multi-dimensional NMR

/2 T /2
RN BN
| T 7t/2

13C I

L

couldn't we add another acquisition time on protons
" to find out which proton is connected to which carbon?



Conclusions: Part |

The sequence T - 11 - T refocuses chemical shifts, but it does when the
mm pulse is applied to both spins it does not refocus J couplings.

The product operator formalism allows to easily visualise and
determine transformations between operators in coupled spin
systems, without the need for calculations.

In a two-spin J coupled system, evolution under the effect of the J
coupling generates anti-phase coherences of the type IxSz.

A 90° pulse on an anti-phase coherence of one spin can transform it
iNnto anti-phase coherence of the other spin: coherence transfer.

The INEPT experiment increases the sensitivity of low y nuclei (e.g.™C,
SN, 3P...) by transferring polarisation from high y nuclei (e.g. 'H)



Homework

L earn the course material.

for detailled derivations and steps of the QM description
(for this week and last week) read QM4NMR on
Moodle.

For the product operator formalism, read chapter 7 of
Keeler

Pay particular attention to understanding the spin echo
and coherence transfer





